Clustering web people search results using fuzzy ants

نویسندگان

  • Els Lefever
  • Timur Fayruzov
  • Véronique Hoste
  • Martine De Cock
چکیده

Person name queries often bring up web pages that correspond to individuals sharing the same name. The Web People Search (WePS) task consists of organizing search results for ambiguous person name queries into meaningful clusters, with each cluster referring to one individual. This paper presents a fuzzy ant based clustering approach for this multi-document person name disambiguation problem. The main advantage of fuzzy ant based clustering, a technique inspired by the behavior of ants clustering dead nestmates into piles, is that no specification of the number of output clusters is required. This makes the algorithm very well suited for the Web Person Disambiguation task, where we do not know in advance how many individuals each person name refers to. We compare our results with state-of-the-art partitional and hierarchical clustering approaches (k-means and Agnes) and demonstrate favorable results. This is particularly interesting as the latter involve manual setting of a similarity threshold, or estimating the number of clusters in advance, while the fuzzy ant based clustering algorithm does not.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Ants Clustering for Web People Search

A search engine query for a person’s name often brings up web pages corresponding to several people who share the same name. The Web People Search (WePS) problem involves organizing such search results for an ambiguous name query in meaningful clusters, that group together all web pages corresponding to one single individual. A particularly challenging aspect of this task is that it is in gener...

متن کامل

Clustering web search results using fuzzy ants

Algorithms for clustering Web search results have to be efficient and robust. Furthermore they must be able to cluster a data set without using any kind of a priori information, such as the required number of clusters. Clustering algorithms inspired by the behavior of real ants generally meet these requirements. In this article we propose a novel approach to ant-based clustering, based on fuzzy...

متن کامل

Clustering Web People Search Results Using Fuzzy Ant- Based Clustering

In this paper, we describe a system to cluster results of peoplesearch which does not require apriori information about the number of clusters the data needs to be clustered into, using Fuzzy Ant-Based Clustering. General Terms Algorithms.

متن کامل

Clustering Using Cemetery Organization Behavior of Ants

Clustering is the unsupervised classification of patterns (data items, observations or feature vectors) into groups (clusters). Clustering problem has been addressed by the researchers of many disciplines in different contexts. Due to the escalating amount of data available online, the World Wide Web has become one of the most precious resource for information retrievals and knowledge discoveri...

متن کامل

Hierarchical Fuzzy Clustering Semantics (HFCS) in Web Document for Discovering Latent Semantics

This paper discusses about the future of the World Wide Web development, called Semantic Web. Undoubtedly, Web service is one of the most important services on the Internet, which has had the greatest impact on the generalization of the Internet in human societies. Internet penetration has been an effective factor in growth of the volume of information on the Web. The massive growth of informat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2010